Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Linking plant genes to insect communities: Identifying the genetic bases of plant traits and community composition.

Identifieur interne : 000856 ( Main/Exploration ); précédent : 000855; suivant : 000857

Linking plant genes to insect communities: Identifying the genetic bases of plant traits and community composition.

Auteurs : Hilary L. Barker [États-Unis] ; Jennifer F. Riehl [États-Unis] ; Carolina Bernhardsson [Suède] ; Kennedy F. Rubert-Nason [États-Unis] ; Liza M. Holeski [États-Unis] ; P R K. Ingvarsson [Suède] ; Richard L. Lindroth [États-Unis]

Source :

RBID : pubmed:31233634

Descripteurs français

English descriptors

Abstract

Community genetics aims to understand the effects of intraspecific genetic variation on community composition and diversity, thereby connecting community ecology with evolutionary biology. Thus far, research has shown that plant genetics can underlie variation in the composition of associated communities (e.g., insects, lichen and endophytes), and those communities can therefore be considered as extended phenotypes. This work, however, has been conducted primarily at the plant genotype level and has not identified the key underlying genes. To address this gap, we used genome-wide association mapping with a population of 445 aspen (Populus tremuloides) genets to identify the genes governing variation in plant traits (defence chemistry, bud phenology, leaf morphology, growth) and insect community composition. We found 49 significant SNP associations in 13 Populus genes that are correlated with chemical defence compounds and insect community traits. Most notably, we identified an early nodulin-like protein that was associated with insect community diversity and the abundance of interacting foundation species (ants and aphids). These findings support the concept that particular plant traits are the mechanistic link between plant genes and the composition of associated insect communities. In putting the "genes" into "genes to ecosystems ecology", this work enhances understanding of the molecular genetic mechanisms that underlie plant-insect associations and the consequences thereof for the structure of ecological communities.

DOI: 10.1111/mec.15158
PubMed: 31233634


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Linking plant genes to insect communities: Identifying the genetic bases of plant traits and community composition.</title>
<author>
<name sortKey="Barker, Hilary L" sort="Barker, Hilary L" uniqKey="Barker H" first="Hilary L" last="Barker">Hilary L. Barker</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Riehl, Jennifer F" sort="Riehl, Jennifer F" uniqKey="Riehl J" first="Jennifer F" last="Riehl">Jennifer F. Riehl</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bernhardsson, Carolina" sort="Bernhardsson, Carolina" uniqKey="Bernhardsson C" first="Carolina" last="Bernhardsson">Carolina Bernhardsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Ecology and Environmental Science, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rubert Nason, Kennedy F" sort="Rubert Nason, Kennedy F" uniqKey="Rubert Nason K" first="Kennedy F" last="Rubert-Nason">Kennedy F. Rubert-Nason</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Holeski, Liza M" sort="Holeski, Liza M" uniqKey="Holeski L" first="Liza M" last="Holeski">Liza M. Holeski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ</wicri:regionArea>
<placeName>
<region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31233634</idno>
<idno type="pmid">31233634</idno>
<idno type="doi">10.1111/mec.15158</idno>
<idno type="wicri:Area/Main/Corpus">000828</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000828</idno>
<idno type="wicri:Area/Main/Curation">000828</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000828</idno>
<idno type="wicri:Area/Main/Exploration">000828</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Linking plant genes to insect communities: Identifying the genetic bases of plant traits and community composition.</title>
<author>
<name sortKey="Barker, Hilary L" sort="Barker, Hilary L" uniqKey="Barker H" first="Hilary L" last="Barker">Hilary L. Barker</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Riehl, Jennifer F" sort="Riehl, Jennifer F" uniqKey="Riehl J" first="Jennifer F" last="Riehl">Jennifer F. Riehl</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bernhardsson, Carolina" sort="Bernhardsson, Carolina" uniqKey="Bernhardsson C" first="Carolina" last="Bernhardsson">Carolina Bernhardsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Ecology and Environmental Science, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rubert Nason, Kennedy F" sort="Rubert Nason, Kennedy F" uniqKey="Rubert Nason K" first="Kennedy F" last="Rubert-Nason">Kennedy F. Rubert-Nason</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Holeski, Liza M" sort="Holeski, Liza M" uniqKey="Holeski L" first="Liza M" last="Holeski">Liza M. Holeski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ</wicri:regionArea>
<placeName>
<region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular ecology</title>
<idno type="eISSN">1365-294X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Biological Evolution (MeSH)</term>
<term>Biota (MeSH)</term>
<term>Ecology (MeSH)</term>
<term>Genes, Plant (genetics)</term>
<term>Genome-Wide Association Study (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Host-Parasite Interactions (MeSH)</term>
<term>Insecta (physiology)</term>
<term>Molecular Biology (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Polymorphism, Single Nucleotide (genetics)</term>
<term>Populus (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Biologie moléculaire (MeSH)</term>
<term>Biote (MeSH)</term>
<term>Gènes de plante (génétique)</term>
<term>Génotype (MeSH)</term>
<term>Insectes (physiologie)</term>
<term>Interactions hôte-parasite (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Polymorphisme de nucléotide simple (génétique)</term>
<term>Populus (génétique)</term>
<term>Écologie (MeSH)</term>
<term>Étude d'association pangénomique (MeSH)</term>
<term>Évolution biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genes, Plant</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Gènes de plante</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Insectes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Insecta</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>Biota</term>
<term>Ecology</term>
<term>Genome-Wide Association Study</term>
<term>Genotype</term>
<term>Host-Parasite Interactions</term>
<term>Molecular Biology</term>
<term>Phenotype</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Biologie moléculaire</term>
<term>Biote</term>
<term>Génotype</term>
<term>Interactions hôte-parasite</term>
<term>Phénotype</term>
<term>Écologie</term>
<term>Étude d'association pangénomique</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Community genetics aims to understand the effects of intraspecific genetic variation on community composition and diversity, thereby connecting community ecology with evolutionary biology. Thus far, research has shown that plant genetics can underlie variation in the composition of associated communities (e.g., insects, lichen and endophytes), and those communities can therefore be considered as extended phenotypes. This work, however, has been conducted primarily at the plant genotype level and has not identified the key underlying genes. To address this gap, we used genome-wide association mapping with a population of 445 aspen (Populus tremuloides) genets to identify the genes governing variation in plant traits (defence chemistry, bud phenology, leaf morphology, growth) and insect community composition. We found 49 significant SNP associations in 13 Populus genes that are correlated with chemical defence compounds and insect community traits. Most notably, we identified an early nodulin-like protein that was associated with insect community diversity and the abundance of interacting foundation species (ants and aphids). These findings support the concept that particular plant traits are the mechanistic link between plant genes and the composition of associated insect communities. In putting the "genes" into "genes to ecosystems ecology", this work enhances understanding of the molecular genetic mechanisms that underlie plant-insect associations and the consequences thereof for the structure of ecological communities.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31233634</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-294X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2019</Year>
<Month>10</Month>
</PubDate>
</JournalIssue>
<Title>Molecular ecology</Title>
<ISOAbbreviation>Mol Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Linking plant genes to insect communities: Identifying the genetic bases of plant traits and community composition.</ArticleTitle>
<Pagination>
<MedlinePgn>4404-4421</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/mec.15158</ELocationID>
<Abstract>
<AbstractText>Community genetics aims to understand the effects of intraspecific genetic variation on community composition and diversity, thereby connecting community ecology with evolutionary biology. Thus far, research has shown that plant genetics can underlie variation in the composition of associated communities (e.g., insects, lichen and endophytes), and those communities can therefore be considered as extended phenotypes. This work, however, has been conducted primarily at the plant genotype level and has not identified the key underlying genes. To address this gap, we used genome-wide association mapping with a population of 445 aspen (Populus tremuloides) genets to identify the genes governing variation in plant traits (defence chemistry, bud phenology, leaf morphology, growth) and insect community composition. We found 49 significant SNP associations in 13 Populus genes that are correlated with chemical defence compounds and insect community traits. Most notably, we identified an early nodulin-like protein that was associated with insect community diversity and the abundance of interacting foundation species (ants and aphids). These findings support the concept that particular plant traits are the mechanistic link between plant genes and the composition of associated insect communities. In putting the "genes" into "genes to ecosystems ecology", this work enhances understanding of the molecular genetic mechanisms that underlie plant-insect associations and the consequences thereof for the structure of ecological communities.</AbstractText>
<CopyrightInformation>© 2019 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Barker</LastName>
<ForeName>Hilary L</ForeName>
<Initials>HL</Initials>
<Identifier Source="ORCID">0000-0002-2187-831X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Riehl</LastName>
<ForeName>Jennifer F</ForeName>
<Initials>JF</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bernhardsson</LastName>
<ForeName>Carolina</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rubert-Nason</LastName>
<ForeName>Kennedy F</ForeName>
<Initials>KF</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Holeski</LastName>
<ForeName>Liza M</ForeName>
<Initials>LM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ingvarsson</LastName>
<ForeName>Pär K</ForeName>
<Initials>PK</Initials>
<Identifier Source="ORCID">0000-0001-9225-7521</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lindroth</LastName>
<ForeName>Richard L</ForeName>
<Initials>RL</Initials>
<Identifier Source="ORCID">0000-0003-4587-7255</Identifier>
<AffiliationInfo>
<Affiliation>Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>PRJEB30919</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Ecol</MedlineTA>
<NlmUniqueID>9214478</NlmUniqueID>
<ISSNLinking>0962-1083</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="N">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058448" MajorTopicYN="Y">Biota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004463" MajorTopicYN="N">Ecology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055106" MajorTopicYN="Y">Genome-Wide Association Study</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="Y">Host-Parasite Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007313" MajorTopicYN="N">Insecta</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008967" MajorTopicYN="Y">Molecular Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus </Keyword>
<Keyword MajorTopicYN="Y">community genetics</Keyword>
<Keyword MajorTopicYN="Y">defence chemistry</Keyword>
<Keyword MajorTopicYN="Y">genome-wide association mapping</Keyword>
<Keyword MajorTopicYN="Y">plant-insect interactions</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>05</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>06</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31233634</ArticleId>
<ArticleId IdType="doi">10.1111/mec.15158</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Abreu, I. N., Ahnlund, M., Moritz, T., & Albrectsen, B. R. (2011). UHPLC-ESI/TOFMS determination of salicylate-like phenolic glycosides in Populus tremula leaves. Journal of Chemical Ecology, 37(8), 857-870. https://doi.org/10.1007/s10886-011-9991-7</Citation>
</Reference>
<Reference>
<Citation>Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9), 1655-1664. https://doi.org/10.1101/gr.094052.109</Citation>
</Reference>
<Reference>
<Citation>Bangert, R. K., Turek, R. J., Rehill, B., Wimp, G. M., Schweitzer, J. A., Allan, G. J., … Whitham, T. G. (2006). A genetic similarity rule determines arthropod community structure. Molecular Ecology, 15(5), 1379-1391. https://doi.org/10.1111/j.1365-294X.2005.02749.x</Citation>
</Reference>
<Reference>
<Citation>Barbour, M. A., Fortuna, M. A., Bascompte, J., Nicholson, J. R., Julkunen-Tiitto, R., Jules, E. S., & Crutsinger, G. M. (2016). Genetic specificity of a plant-insect food web: Implications for linking genetic variation to network complexity. Proceedings of the National Academy of Sciences of the USA, 113(8), 2128-2133. https://doi.org/10.1073/pnas.1513633113</Citation>
</Reference>
<Reference>
<Citation>Barbour, M. A., Rodriguez-Cabal, M. A., Wu, E. T., Julkunen-Tiitto, R., Ritland, C. E., Miscampbell, A. E., … Crutsinger, G. M. (2015). Multiple plant traits shape the genetic basis of herbivore community assembly. Functional Ecology, 29, 995-1006. https://doi.org/10.1111/1365-2435.12409</Citation>
</Reference>
<Reference>
<Citation>Barker, H. L., Holeski, L. M., & Lindroth, R. L. (2018). Genotypic variation in plant traits shapes herbivorous insect and ant communities on a foundation tree species. PLoS ONE, 13(7), e0200954. https://doi.org/10.1371/journal.pone.0200954</Citation>
</Reference>
<Reference>
<Citation>Barker, H. L., Riehl, J. F., Bernhardsson, C., Rubert-Nason, K. F., Holeski, L. M., Ingvarsson, P. K., & Lindroth, R. L. (2019). Data from: Linking plant genes to insect communities: Identifying the genetic bases of plant traits and community composition. Dryad Digital Repository, https://doi.org/10.5061/dryad.fr045hv</Citation>
</Reference>
<Reference>
<Citation>Bass, A., Storey, J., Dabney, A., & Robinson, D. (2015). qvalue: Q-value estimation for false discovery rate control. Retrieved from http://github.com/jdstorey/qvalue</Citation>
</Reference>
<Reference>
<Citation>Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01</Citation>
</Reference>
<Reference>
<Citation>Beavis (1994). The power and deceit of QTL experiments: Lessons from comparative QTL studies. Proceedings of the Forty-Ninth Annual Corn and Sorghum Industry Research Conference, 250-266.</Citation>
</Reference>
<Reference>
<Citation>Bernhardsson, C., Robinson, K. M., Abreu, I. N., Jansson, S., Albrectsen, B. R., & Ingvarsson, P. K. (2013). Geographic structure in metabolome and herbivore community co-occurs with genetic structure in plant defence genes. Ecology Letters, 16(6), 791-798. https://doi.org/10.1111/ele.12114</Citation>
</Reference>
<Reference>
<Citation>Boeckler, G. A., Gershenzon, J., & Unsicker, S. B. (2011). Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry, 72(13), 1497-1509. https://doi.org/10.1016/j.phytochem.2011.01.038</Citation>
</Reference>
<Reference>
<Citation>Bown, A., MacGregor, K., & Shelp, B. (2006). Gamma-aminobutyrate: Defense against invertebrate pests? Trends in Plant Science, 11(9), 424-427. https://doi.org/10.1016/j.tplants.2006.07.002</Citation>
</Reference>
<Reference>
<Citation>Boyle, E. I., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J. M., & Sherlock, G. (2004). GO:TermFinder-open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics, 20(18), 3710-3715. https://doi.org/10.1093/bioinformatics/bth456</Citation>
</Reference>
<Reference>
<Citation>Bresadola, L., Caseys, C., Castiglione, S., Buerkle, C. A., Wegmann, D., & Lexer, C. (2019). Admixture mapping in interspecific Populus hybrids identifies classes of genomic architectures for phytochemical, morphological and growth traits. New Phytologist, 1-28. https://doi.org/10.1111/nph.15930</Citation>
</Reference>
<Reference>
<Citation>Brito, A. R. (2017). Spatial and temporal variations in weather and host-plant quality affect arthropod herbivore populations in aspen canopies. Madison, WI: University of Wisconsin.</Citation>
</Reference>
<Reference>
<Citation>Burkle, L. A., Souza, L., Genung, M. A., & Crutsinger, G. M. (2013). Plant genotype, nutrients, and G × E interactions structure floral visitor communities. Ecosphere, 4(9), 1-20. https://doi.org/10.1890/ES13-00039.1</Citation>
</Reference>
<Reference>
<Citation>Callahan, C. M., Rowe, C. A., Ryel, R. J., Shaw, J. D., Madritch, M. D., & Mock, K. E. (2013). Continental-scale assessment of genetic diversity and population structure in quaking aspen (Populus tremuloides). Journal of Biogeography, 40(9), 1780-1791. https://doi.org/10.1111/jbi.12115</Citation>
</Reference>
<Reference>
<Citation>Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., … Durbin, R. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158. https://doi.org/10.1093/bioinformatics/btr330</Citation>
</Reference>
<Reference>
<Citation>Denancé, N., Szurek, B., & Noël, L. D. (2014). Emerging functions of nodulin-like proteins in non-nodulating plant species. Plant and Cell Physiology, 55(3), 469-474. https://doi.org/10.1093/pcp/pct198</Citation>
</Reference>
<Reference>
<Citation>DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., … Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43, https://doi.org/10.1038/ng.806</Citation>
</Reference>
<Reference>
<Citation>Dewoody, J., Viger, M., Lakatos, F., Tuba, K., Taylor, G., & Smulders, M. J. M. (2013). Insight into the genetic components of community genetics: QTL mapping of insect association in a fast-growing forest tree. PLoS ONE, 8(11), e79925. https://doi.org/10.1371/journal.pone.0079925</Citation>
</Reference>
<Reference>
<Citation>Du, Q., Gong, C., Wang, Q., Zhou, D., Yang, H., Pan, W., … Zhang, D. (2016). Genetic architecture of growth traits in Populus revealed by integrated quantitative trait locus (QTL) analysis and association studies. New Phytologist, 209(3), 1067-1082. https://doi.org/10.1111/nph.13695</Citation>
</Reference>
<Reference>
<Citation>Evans, L. M., Kaluthota, S., Pearce, D. W., Allan, G. J., Floate, K., Rood, S. B., & Whitham, T. G. (2016). Bud phenology and growth are subject to divergent selection across a latitudinal gradient in Populus angustifolia and impact adaptation across the distributional range and associated arthropods. Ecology and Evolution, 6(13), 4565-4581. https://doi.org/10.1002/ece3.2222</Citation>
</Reference>
<Reference>
<Citation>Fahrenkrog, A. M., Neves, L. G., Resende, M. F. R., Vazquez, A. I., de los Campos, G., Dervinis, C., & Kirst, M. (2017). Genome-wide association study reveals putative regulators of bioenergy traits in Populus deltoides. New Phytologist, 213(2), 799-811. https://doi.org/10.1111/nph.14154</Citation>
</Reference>
<Reference>
<Citation>Falk, M. A. (2017). Effects of genetic variation in temporal foliar chemical patterns on phenological relationships between trembling aspen (Populus tremuloides Michx.) and gypsy moth (Lymantria dispar L.). Madison, WI: University of Wisconsin.</Citation>
</Reference>
<Reference>
<Citation>Goh, L., & Yap, V. B. (2009). Effects of normalization on quantitative traits in association test. BMC Bioinformatics, 10, 415. https://doi.org/10.1186/1471-2105-10-415</Citation>
</Reference>
<Reference>
<Citation>Gosney, B. J., O′Reilly-Wapstra, J. M., Forster, L. G., Barbour, R. C., Iason, G. R., & Potts, B. M. (2014). Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities. PLoS ONE, 9(12), e114132. https://doi.org/10.1371/journal.pone.0114132</Citation>
</Reference>
<Reference>
<Citation>Guo, J., Wang, S., Valerius, O., Hall, H., Zeng, Q., Li, J.-F., … Chen, J.-G. (2011). Involvement of Arabidopsis RACK1 in protein translation and its regulation by abscisic acid. Plant Physiology, 155(1), 370-383. https://doi.org/10.1104/pp.110.160663</Citation>
</Reference>
<Reference>
<Citation>Hagerman, A. E., & Butler, L. G. (1980). Condensed tannin purification and characterization of tannin-associated proteins. Journal of Agricultural and Food Chemistry, 28(5), 947-952. https://doi.org/10.1021/jf60231a011</Citation>
</Reference>
<Reference>
<Citation>Hallingbäck, H. H. R., Fogelqvist, J., Powers, S. S. J., Turrion-Gomez, J., Rossiter, R., Amey, J., … Rönnberg-Wästljung, A.-C. (2016). Association mapping in Salix viminalis L. (Salicaceae) - identification of candidate genes associated with growth and phenology. GCB Bioenergy, 8(3), 670-685. https://doi.org/10.1111/gcbb.12280</Citation>
</Reference>
<Reference>
<Citation>Harris, M. A., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R., …Gene Ontology Consortium (2004). The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research, 32(90001), 258D-261. https://doi.org/10.1093/nar/gkh036</Citation>
</Reference>
<Reference>
<Citation>Harrison, J. G., Philbin, C. S., Gompert, Z., Forister, G. W., Hernandez-Espinoza, L., Sullivan, B. W., … Forister, M. L. (2018). Deconstruction of a plant-arthropod community reveals influential plant traits with nonlinear effects on arthropod assemblages. Functional Ecology, 32(5), 1317-1328. https://doi.org/10.1111/1365-2435.13060</Citation>
</Reference>
<Reference>
<Citation>Hassani-Pak, K. (2017). KnetMiner - An integrated data platform for gene mining and biological knowledge discovery. Bielefeld University. Retrieved from https://pub.uni-bielefeld.de/publication/2915227</Citation>
</Reference>
<Reference>
<Citation>Hillstrom, M. L. (2009). Effects of elevated carbon dioxide and ozone on forest insect abundance, diversity, and community composition. Madison, WI: University of Wisconsin.</Citation>
</Reference>
<Reference>
<Citation>Holeski, L. M., Hillstrom, M. L., Whitham, T. G., & Lindroth, R. L. (2012). Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species. Oecologia, 170(3), 695-707. https://doi.org/10.1007/s00442-012-2344-6</Citation>
</Reference>
<Reference>
<Citation>Ingvarsson, P. K., & Street, N. R. (2011). Association genetics of complex traits in plants. New Phytologist, 189, 909-922. https://doi.org/10.1111/j.1469-8137.2010.03593.x</Citation>
</Reference>
<Reference>
<Citation>Kagiya, S., Yasugi, M., Kudoh, H., Nagano, A. J., & Utsumi, S. (2018). Does genomic variation in a foundation species predict arthropod community structure in a riparian forest? Molecular Ecology, 27(5), 1284-1295. https://doi.org/10.1111/mec.14515</Citation>
</Reference>
<Reference>
<Citation>Katano, I., Doi, H., Eriksson, B. K., & Hillebrand, H. (2015). A cross-system meta-analysis reveals coupled predation effects on prey biomass and diversity. Oikos, 124(11), 1427-1435. https://doi.org/10.1111/oik.02430</Citation>
</Reference>
<Reference>
<Citation>Keith, A. R., Bailey, J. K., Lau, M. K., & Whitham, T. G. (2017). Genetics-based interactions of foundation species affect community diversity, stability and network structure. Proceedings of the Royal Society B: Biological Sciences, 284(1854), 20162703. https://doi.org/10.1098/rspb.2016.2703</Citation>
</Reference>
<Reference>
<Citation>Keith, A. R., Bailey, J. K., & Whitham, T. G. (2010). A genetic basis to community repeatability and stability. Ecology, 91(11), 3398-3406. https://doi.org/10.1890/09-1236.1</Citation>
</Reference>
<Reference>
<Citation>Koricheva, J., & Hayes, D. (2018). The relative importance of plant intraspecific diversity in structuring arthropod communities: A meta-analysis. Functional Ecology, 32(7), 1704-1717. https://doi.org/10.1111/1365-2435.13062</Citation>
</Reference>
<Reference>
<Citation>Lamit, L. J., Busby, P. E., Lau, M. K., Compson, Z. G., Wojtowicz, T., Keith, A. R., … Whitham, T. G. (2015). Tree genotype mediates covariance among communities from microbes to lichens and arthropods. Ecology, 103, 840-850. https://doi.org/10.1111/1365-2745.12416</Citation>
</Reference>
<Reference>
<Citation>Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. https://doi.org/10.1093/bioinformatics/btp324</Citation>
</Reference>
<Reference>
<Citation>Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., … Durbin, R. (2009). The sequence alignment / map format and SAMtools. Bioinformatics, 25(16), 2078-2079. https://doi.org/10.1093/bioinformatics/btp352</Citation>
</Reference>
<Reference>
<Citation>Lin, Y., Wang, J., Delhomme, N., Schiffthaler, B., Sundström, G., & Zuccolo, A. (2018). Functional and evolutionary genomic inferences in Populus through genome and population sequencing of American and European aspen. Proceedings of the National Academy of Sciences of the USA, 115(46), E10970-E10978. https://doi.org/10.1073/pnas.1801437115</Citation>
</Reference>
<Reference>
<Citation>Lindroth, R. L., & St. Clair, S. B. (2013). Adaptations of quaking aspen (Populus tremuloides Michx.) for defense against herbivores. Forest Ecology and Management, 299, 14-21. https://doi.org/10.1016/j.foreco.2012.11.018</Citation>
</Reference>
<Reference>
<Citation>Liu, J.-X., Srivastava, R., Che, P., & Howell, S. H. (2007). Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. The Plant Journal, 51(5), 897-909. https://doi.org/10.1111/j.1365-313X.2007.03195.x</Citation>
</Reference>
<Reference>
<Citation>Maffei, M. E., Mithöfer, A., & Boland, W. (2007). Before gene expression: Early events in plant-insect interaction. Trends in Plant Science, 12(7), 310-316. https://doi.org/10.1016/J.TPLANTS.2007.06.001</Citation>
</Reference>
<Reference>
<Citation>Mckenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., … Depristo, M. A. (2010). The Genome Analysis Toolkit : A MapReduce framework for analyzing next-generation DNA sequencing data. Genome, 20, 1297-1303. https://doi.org/10.1101/gr.107524.110.20</Citation>
</Reference>
<Reference>
<Citation>McKown, A. D., Klápště, J., Guy, R. D., El-Kassaby, Y. A., & Mansfield, S. D. (2018). Ecological genomics of variation in bud-break phenology and mechanisms of response to climate warming in Populus trichocarpa. New Phytologist, 220(1), 300-316. https://doi.org/10.1111/nph.15273</Citation>
</Reference>
<Reference>
<Citation>McKown, A. D., Klápště, J., Guy, R. D., Geraldes, A., Porth, I., Hannemann, J., … Douglas, C. J. (2014). Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. New Phytologist, 203(2), 535-553. https://doi.org/10.1111/nph.12815</Citation>
</Reference>
<Reference>
<Citation>Mitton, J. B., & Grant, M. C. (1996). Genetic variation and the natural history of quaking aspen. BioScience, 46(1), 25-31. https://doi.org/10.2307/1312652</Citation>
</Reference>
<Reference>
<Citation>Money, D., Gardner, K., Migicovsky, Z., Schwaninger, H., Zhong, G.-Y., & Myles, S. (2015). LinkImpute: Fast and accurate genotype imputation for nonmodel organisms. G3: Genes, Genomes, Genetics, 5(11), 2383-2390. https://doi.org/10.1534/g3.115.021667</Citation>
</Reference>
<Reference>
<Citation>Nabity, P. D., Haus, M. J., Berenbaum, M. R., & DeLucia, E. H. (2013). Leaf-galling phylloxera on grapes reprograms host metabolism and morphology. Proceedings of the National Academy of Sciences of the USA, 110(41), 16663-16668. https://doi.org/10.1073/pnas.1220219110</Citation>
</Reference>
<Reference>
<Citation>Nakajima, Y., & Suzuki, S. (2013). Environmental stresses induce misfolded protein aggregation in plant cells in a microtubule-dependent manner. International Journal of Molecular Sciences, 14(4), 7771-7783. https://doi.org/10.3390/ijms14047771</Citation>
</Reference>
<Reference>
<Citation>Porfirova, S., Bergmuller, E., Tropf, S., Lemke, R., & Dormann, P. (2002). Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proceedings of the National Academy of Sciences of the USA, 99(19), 12495-12500. https://doi.org/10.1073/pnas.182330899</Citation>
</Reference>
<Reference>
<Citation>Porter, L. J., Hrstich, L. N., & Chan, B. G. (1986). The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry, 25, 223-230. https://doi.org/10.1016/S0031-9422(00)94533-3</Citation>
</Reference>
<Reference>
<Citation>Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., … Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3), 559-575. https://doi.org/10.1086/519795</Citation>
</Reference>
<Reference>
<Citation>Ramesh, S. A., Tyerman, S. D., Gilliham, M., & Xu, B. (2017). γ-Aminobutyric acid (GABA) signalling in plants. Cellular and Molecular Life Sciences, 74(9), 1577-1603. https://doi.org/10.1007/s00018-016-2415-7</Citation>
</Reference>
<Reference>
<Citation>Ravet, K., Touraine, B., Boucherez, J., Briat, J.-F., Gaymard, F., & Cellier, F. (2009). Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. The Plant Journal, 57(3), 400-412. https://doi.org/10.1111/j.1365-313X.2008.03698.x</Citation>
</Reference>
<Reference>
<Citation>Robinson, K. M., Ingvarsson, P. K., Jansson, S., & Albrectsen, B. R. (2012). Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L.). PLoS ONE, 7(5), e37679. https://doi.org/10.1371/journal.pone.0037679</Citation>
</Reference>
<Reference>
<Citation>Rönnberg-Wästljung, A. C., Ahman, I., Glynn, C., & Widenfalk, O. (2006). Quantitative trait loci for resistance to herbivores in willow: Field experiments with varying soils and climates. Entomologia Experimentalis et Applicata, 118(2), 163-174. https://doi.org/10.1111/j.1570-7458.2006.00371.x</Citation>
</Reference>
<Reference>
<Citation>Rubert-Nason, K. F., Hedman, C. J., Holeski, L. M., & Lindroth, R. L. (2014). Determination of salicinoids by micro-high-performance liquid chromatography and photodiode array detection. Phytochemical Analysis, 25(3), 185-191. https://doi.org/10.1002/pca.2485</Citation>
</Reference>
<Reference>
<Citation>Rubert-Nason, K. F., Holeski, L. M., Couture, J. J., Gusse, A., Undersander, D. J., & Lindroth, R. L. (2013). Rapid phytochemical analysis of birch (Betula) and poplar (Populus) foliage by near-infrared reflectance spectroscopy. Analytical and Bioanalytical Chemistry, 405(4), 1333-1344. https://doi.org/10.1007/s00216-012-6513-6</Citation>
</Reference>
<Reference>
<Citation>Rubert-Nason, K., Keefover-Ring, K., & Lindroth, R. L. (2018). Purification and analysis of Salicinoids. Current Analytical Chemistry, 14(4), 423-429. https://doi.org/10.2174/1573411014666171221131933</Citation>
</Reference>
<Reference>
<Citation>Scholz, S., Reichelt, M., Mekonnen, D. W., Ludewig, F., & Mithofer, A. (2015). Insect herbivory-elicited GABA accumulation in plants is a wound-induced, direct, systemic, and jasmonate-independent defense response. Frontiers in Plant Science, 6, 1128. https://doi.org/10.3389/fpls.2015.01128</Citation>
</Reference>
<Reference>
<Citation>Schweitzer, J. A., Madritch, M. D., Bailey, J. K., LeRoy, C. J., Fischer, D. G., Rehill, B. J., … Whitham, T. G. (2008). From genes to ecosystems: The genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system. Ecosystems, 11(6), 1005-1020. https://doi.org/10.1007/s10021-008-9173-9</Citation>
</Reference>
<Reference>
<Citation>Shang, X., Cao, Y., & Ma, L. (2017). Alternative splicing in plant genes: A means of regulating the environmental fitness of plants. International Journal of Molecular Sciences, 18(2), e432. https://doi.org/10.3390/ijms18020432</Citation>
</Reference>
<Reference>
<Citation>Shenk, J. S., & Westerhaus, M. O. (1991a). Population definition, sample selection, and calibration procedures for near infrared reflectance spectroscopy. Crop Science, 31(2), 469. https://doi.org/10.2135/cropsci1991.0011183X003100020049x</Citation>
</Reference>
<Reference>
<Citation>Shenk, J. S., & Westerhaus, M. O. (1991b). Populations structuring of near infrared spectra and modified partial least squares regression. Crop Science, 31(6), 1548. https://doi.org/10.2135/cropsci1991.0011183X003100060034x</Citation>
</Reference>
<Reference>
<Citation>Sjödin, A., Street, N. R., Sandberg, G., Gustafsson, P., & Jansson, S. (2009). The Populus genome integrative explorer (PopGenIE): A new resource for exploring the Populus genome. New Phytologist, 182(4), 1013-1025. https://doi.org/10.1111/j.1469-8137.2009.02807.x</Citation>
</Reference>
<Reference>
<Citation>Skovmand, L. H., Xu, C. C. Y., Servedio, M. R., Nosil, P., Barrett, R. D. H., & Hendry, A. P. (2018). Keystone genes. Trends in Ecology & Evolution, 33(9), 689-700. https://doi.org/10.1016/j.tree.2018.07.002</Citation>
</Reference>
<Reference>
<Citation>Sollins, P., Glassman, C., Paul, E., Swanston, C., Lajtha, K., Heil, J., & Elliott, E. (1999). Soil carbon and nitrogen: Pools and fractions. In G. Robertson, D. Coleman, C. Bledsoe, & P. Sollins (Eds.), Standard soil methods for long-term ecological research (pp. 89-105). New York, NY: Oxford University Press.</Citation>
</Reference>
<Reference>
<Citation>Staff, S. S., NRCS, & USDA (2012). Web soil survey. Retrieved from https://websoilsurvey.sc.egov.usda.gov/</Citation>
</Reference>
<Reference>
<Citation>Stevens, M. T., Waller, D. M., & Lindroth, R. L. (2007). Resistance and tolerance in Populus tremuloides: Genetic variation, costs, and environmental dependency. Evolutionary Ecology, 21(6), 829-847. https://doi.org/10.1007/s10682-006-9154-4</Citation>
</Reference>
<Reference>
<Citation>Swarbreck, D., Wilks, C., Lamesch, P., Berardini, T. Z., Garcia-Hernandez, M., Foerster, H., … Huala, E. (2007). The Arabidopsis Information Resource (TAIR): Gene structure and function annotation. Nucleic Acids Research, 36(Database), D1009-D1014. https://doi.org/10.1093/nar/gkm965</Citation>
</Reference>
<Reference>
<Citation>Thoen, M. P. M., Davila Olivas, N. H., Kloth, K. J., Coolen, S., Huang, P.-P., Aarts, M. G. M., … Dicke, M. (2017). Genetic architecture of plant stress resistance: Multi-trait genome-wide association mapping. New Phytologist, 213(3), 1346-1362. https://doi.org/10.1111/NPH.14220</Citation>
</Reference>
<Reference>
<Citation>Tuskan, G. A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., …Rokhsar, D. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313(5793), 1596-1604. https://doi.org/10.1126/science.1128691</Citation>
</Reference>
<Reference>
<Citation>Tzin, V., Lindsay, P. L., Christensen, S. A., Meihls, L. N., Blue, L. B., & Jander, G. (2015). Genetic mapping shows intraspecific variation and transgressive segregation for caterpillar-induced aphid resistance in maize. Molecular Ecology, 24(22), 5739-5750. https://doi.org/10.1111/mec.13418</Citation>
</Reference>
<Reference>
<Citation>Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., Del Angel, G., Levy-Moonshine, A., … DePristo, M. A. (2013). From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Current Protocols in Bioinformatics, 43(1110), 11.10.1-11.10.33. https://doi.org/10.1002/0471250953.bi1110s43</Citation>
</Reference>
<Reference>
<Citation>van Veen, F. J., Morris, R. J., & Godfray, H. C. J. (2006). Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annual Review of Entomology, 51(1), 187-208. https://doi.org/10.1146/annurev.ento.51.110104.151120</Citation>
</Reference>
<Reference>
<Citation>Vellosillo, T., Aguilera, V., Marcos, R., Bartsch, M., Vicente, J., Cascón, T., … Castresana, C. (2013). Defense activated by 9-lipoxygenase-derived oxylipins requires specific mitochondrial proteins. Plant Physiology, 161(2), 617-627. https://doi.org/10.1104/pp.112.207514</Citation>
</Reference>
<Reference>
<Citation>Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S, 4th ed. New York, NY: Springer. ISBN 0-387-95457-0.</Citation>
</Reference>
<Reference>
<Citation>Vidal, M. C., & Murphy, S. M. (2018). Bottom-up vs. top-down effects on terrestrial insect herbivores: A meta-analysis. Ecology Letters, 21(1), 138-150. https://doi.org/10.1111/ele.12874</Citation>
</Reference>
<Reference>
<Citation>Wang, F., Ning, D., Chen, Y., Dang, C., Han, N.-S., Liu, Y., & Ye, G.-Y. (2015). Comparing gene expression profiles between Bt and non-Bt rice in response to brown planthopper infestation. Frontiers in Plant Science, 6, 1181. https://doi.org/10.3389/fpls.2015.01181</Citation>
</Reference>
<Reference>
<Citation>Wang, J., Street, N. R., Scofield, D. G., & Ingvarsson, P. K. (2016). Natural selection and recombination rate variation shape nucleotide polymorphism across the genomes of three related Populus species. Genetics, 202(3), 1185-1200. https://doi.org/10.1534/genetics.115.183152</Citation>
</Reference>
<Reference>
<Citation>Wimp, G. M., Martinsen, G. D., Floate, K. D., Bangert, R. K., & Whitham, T. G. (2005). Plant genetic determinants of arthropod community structure and diversity. Evolution, 59(1), 61-69. https://doi.org/10.1111/j.0014-3820.2005.tb00894.x</Citation>
</Reference>
<Reference>
<Citation>Wimp, G. M., & Whitham, T. G. (2012). Biodiversity consequences of predation and host plant hybridization on an aphid-ant mutualism. Ecology, 82(2), 440-452.</Citation>
</Reference>
<Reference>
<Citation>Wimp, G. M., Wooley, S., Bangert, R. K., Young, W. P., Martinsen, G. D., Keim, P., … Whitham, T. G. (2007). Plant genetics predicts intra-annual variation in phytochemistry and arthropod community structure. Molecular Ecology, 16(23), 5057-5069. https://doi.org/10.1111/j.1365-294X.2007.03544.x</Citation>
</Reference>
<Reference>
<Citation>Woolbright, S. A., Rehill, B. J., Lindroth, R. L., DiFazio, S. P., Martinsen, G. D., Zinkgraf, M. S., … Whitham, T. G. (2018). Large effect quantitative trait loci for salicinoid in Populus: Implications for gene discovery. Ecology and Evolution, 8, 3726-3737. https://doi.org/10.1002/ece3.3932</Citation>
</Reference>
<Reference>
<Citation>Zhang, J., Yang, Y., Zheng, K., Xie, M., Feng, K., Jawdy, S. S., … Chen, J. (2018). Genome-wide association studies and expression-based quantitative trait loci analyses reveal roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation by defense- responsive transcription factors in Populus. New Phytologist, 220, 502-516. https://doi.org/10.1111/nph.15297</Citation>
</Reference>
<Reference>
<Citation>Zhang, Z., Liu, J., Ding, X., Bijma, P., de Koning, D.-J., & Zhang, Q. (2010). Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix. PLoS ONE, 5(9), e12648. https://doi.org/10.1371/journal.pone.0012648</Citation>
</Reference>
<Reference>
<Citation>Zhou, X., & Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 44(7), 821-824. https://doi.org/10.1038/ng.2310</Citation>
</Reference>
<Reference>
<Citation>Zinkgraf, M. S., Meneses, N., Whitham, T. G., & Allan, G. J. (2016). Genetic variation in NIN1 and C/VIF1 genes is significantly associated with Populus angustifolia resistance to a galling herbivore, Pemphigus betae. Journal of Insect Physiology, 84, 50-59. https://doi.org/10.1016/J.JINSPHYS.2015.10.007</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
<li>États-Unis</li>
</country>
<region>
<li>Arizona</li>
<li>Wisconsin</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Barker, Hilary L" sort="Barker, Hilary L" uniqKey="Barker H" first="Hilary L" last="Barker">Hilary L. Barker</name>
</region>
<name sortKey="Holeski, Liza M" sort="Holeski, Liza M" uniqKey="Holeski L" first="Liza M" last="Holeski">Liza M. Holeski</name>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<name sortKey="Riehl, Jennifer F" sort="Riehl, Jennifer F" uniqKey="Riehl J" first="Jennifer F" last="Riehl">Jennifer F. Riehl</name>
<name sortKey="Rubert Nason, Kennedy F" sort="Rubert Nason, Kennedy F" uniqKey="Rubert Nason K" first="Kennedy F" last="Rubert-Nason">Kennedy F. Rubert-Nason</name>
</country>
<country name="Suède">
<noRegion>
<name sortKey="Bernhardsson, Carolina" sort="Bernhardsson, Carolina" uniqKey="Bernhardsson C" first="Carolina" last="Bernhardsson">Carolina Bernhardsson</name>
</noRegion>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000856 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000856 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31233634
   |texte=   Linking plant genes to insect communities: Identifying the genetic bases of plant traits and community composition.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31233634" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020